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Time similarity analysis of unsteady buoyant plumes 
in neutral surroundings 
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A time similarity formuIation of the flow equations for unsteady plumes is shown to  
exist only when the buoyancy flux a t  the source varies as a power function of time. The 
time similarity equations for unsteady plumes are solved numerically. It is shown that 
the velocity of the leading edge of the plume is less (at most the 0.42 fraction) than the 
velocity inside the plume behind its leading edge; this observation is consistent with 
Turner’s (1962) results on the behaviour of a starting plume with constant buoyancy 
flux a t  the source. Finally, experimental results of axial temperature histories in the 
buoyant plume generated by a fast-growing fire are compared with the theoretical 
predictions. 

1. Introduction 
Buoyant plumes originating from growing fires are unsteady; i.e. the buoyancy 

flux varies with time. Knowledge of the temperature histories in unsteady plumes is 
required to  predict, for example, the response of detectors in fast-growing fires. The 
present study is a continuation of the work of Heskestad (1972)) who developed func- 
tional correlations of temperature histories in unsteady plumes, based on dimensional 
arguments. 

The development of the present work is based on an extension of Turner’s (1962) 
model of the flow field associated with a starting plume of constant buoyancy flux a t  
the source. The flow generated by an  unsteady plume is visualized as consisting of the 
flow inside the plume and the flow in the front preceding the plume. The advancing 
front may be modelled as a spherical thermal. The front attached to the plumeadvances 
through stationary fluid, where i t  becomes mixed with its surroundings, while a t  the 
same time additional fluid drawn up into the advancing front from the plume imparts 
to it extra buoyancy and momentum. 

Only the flow properties inside the unsteady plume are derived in this work. I n  5 2 
the time similarity formulation of the integral unsteady plume equations is developed. 
It is shown that a time similarity formulation exists only when the buoyancy flux a t  
the source varies as a power function of time. I n  $ 3 a renormalization and the numeri- 
cal solution of the unsteady plume equations is presented, together with one asympto- 
tic solution. It is also shown that the velocity a t  the leading edge of the plume (which 
is defined here to  coincide with the base of the thermal) is less (at most the 0.42 frac- 
tion) than the velocity inside the plume behind the leading edge. Finally, in $4 the 
theoretical results are compared with experimental temperature histories inside the 
plume generated by a fast-growing fire. 
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2. Unsteady plume equations and similarity analysis 
An unsteady plume is preceded by a thermal cap, in the same manner as a developing 

plume of constant buoyancy flux [see, e.g., Turner (1962) and Middleton (1975)l. The 
base of the thermal cap is defined also as the leading edge of the plume. 

The unsteady plume equations are derived assuming the usual weak plume approxi- 
mations (Middleton 1975) with Gaussian profiles (Morton 1959) for the mean velocity 
and mean buoyancy flux. Cylindrical co-ordinates ( r ,  z )  with z upwards are used. The 
time is represented by t .  

Consistent with the above assumptions, the integral equations for mass, momentum 
and energy conservation in an unsteady plume are 

ar; 8 -+- ( r iU)  = Zar, U ,  
at a2 

a l a  
-(r,2B)+--(riUB) = 0, 
at 1 + A 2  az 

where a is the entrainment coefficient, assumed constant; ro(z ,  t )  represents the momen- 
tum lateral spread; hr,(t, z )  represents the lateral spread of heat; and U ( z , t )  and 
B(z, t)  are the axial values of the mean velocity and mean buoyancy, respectively. 

For a virtual point source of buoyancy, the mass flux, momentum flux and buoy- 
ancy flux are zero at  the beginning (t = 0 )  of buoyancy flux release (initial conditions). 
The buoyancy flux at the source, F ( t ) ,  is related to the plume properties by 

h2+ 1 
A277 

( r i  U B )  ( z  = 0, t )  = ---F(t), 

while the mass flux and momentum flux at  the source are zero a t  all times (boundary 
conditions). 

In  a time similarity formulation the appropriate velocity scale is the velocity a t  the 
base of the thermal cap (leading edge of plume) ULE(t) and the appropriate length scale 
is the distance of the leading edge from the virtual source ZLE( t ) .  To be consistent with 
time similarity theories (e.g. Hansen 1967) the dimensionless variables should be 

(F, 0, 8) being functions of Z and t .  The independent variable Z indicates physi- 
cally the relative vertical location of a point inside the plume with respect to the 
location of the leading edge and assumes values from 0 to 1.  
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A similarity formulation would be possible if all the dimensionless variables (P, u,8) 
are explicit functions of only the dimensionless vertical distance (2) and implicitly 
dependent on time through Z. By writing the unsteady plume equations and the asso- 
ciated initial and boundary conditions in terms of dimensionless variables [(2.5), ( 2 . 6 ) ,  
( 2 . 7 )  and (2.8)], it  is found that the necessary condition for a time similarity formula- 
tion to exist is Z,,(t) = A t n ,  (2 .9)  

and (2.10) 

where A and n are constants. From (2 .10 ) ,  which has been derived from (2 .4 ) ,  we can 
conclude that similarity solutions would exist only if the buoyancy flux F(t)  is a power 
law function of time, F(t)  = ft". (2.11) 

It follows from (2.10) that 

and 

( 2 . 1 2 4  

(2 .12b)  

The constant A remains undetermined ; physically, it  defines the location of the 
leading edge [cf. ( 2 . 9 ) ] ;  it  could be determined either experinentally or by coupling the 
motion of the plume with the motion of the thermal cap preceding the plume. 

3. Renormalization and numerical solutions of the similarity equations 

[ ( 2 . 5 ) ,  (2.6),  (2.7) and (2.8)] accept an asymptotic solution for 2+0: 
The unsteady plume equations expressed in terms of the dimensionless variables 

( 3 . l a )  

( 3 . l b )  
a 

- 2a: 
B, = z"-8, ( 3 . 1 ~ )  

a - (22)t (3 .1d )  where 

with c =  (A2+ 1 ) f  (3 .1e)  

d 0 - 5  - gaz, - 
uo = fz"-B, 

3n(n - 1)  h2 

'- 2 4 a 2  ' 

7rA4 ' 

It can be shown that the previous solution reduces in terms of physical variables to 
the so-called quasi -steady approximation. In the quasi-steady approximation the 
properties of the plume are obtained from the steady plume solutions with the buoy- 
ancy flux equal to its instantaneous value (Heskestad 1972).  

Normalized variables are introduced using the above asymptotic solution: 

(3 .2a )  

(3 .2b)  

( 3 . 2 ~ )  

9-2 
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The normalized variables express physically the ratio of the unsteady plume prop- 

It has been found by inspection that the following independent variable facilitates 
erties to the corresponding quasi-steady values. 

the numerical calcuIations : 

(3.3) 
- pza =-. 

a1 

The independent variable Z takes on values from 0 to p/a,. 
In  terms of the normalized variables, the flow equations (2.1), (2.2) and (2.3) take 

the form 

with the following boundary conditions: 

f =  I 

B = l  

( 3 . 4 ~ )  

(3.4b) 

(3.4c) 

(3.5) 

The system of equations (3.4a),  (3.4b) and (3.4c), together with the boundary con- 
dition (3.5), has been solved numerically by the simple Euler method. Although it is 
known that the independent variable 2 varies from 0 to p/a,, its upper limit is not 
defined apriori. The upper limit determines the position of the leading edge in terms of 
the variable Z. Its  value depends on the value of the unknown factor A [cf. discussion 
after (2.12 b)] which determines the position of the leading edge in physical co-ordinates 
[cf. (2.9)]. We attempted to solve (3.4a),  (3.4b) and ( 3 . 4 ~ )  for all positive values of X. 
However, a singularity is observed a t  the position 

It can be shown that, when (3.6) is satisfied, the derivative of thenormalized buoyancy 
B cannot be finite. This means that a discontinuity (shock) of buoyancy is to be 
expected. In  other words, (3.6) would give the furthest possible position of the leading 
edge of the plume without discontinuity in buoyancy. For this location of the leading 
edge, the velocity inside the plume behind the leading edge (U,) is related to the 
leading edge velocity by %=1 

u, 1 +h2’ (3.7) 

which is derived from (3.6) and the definitions of Z (at  2 = Z,,(t)) and 0 [see (3.2) and 
(2.5), (8.6), (2.7)]. For locations ofthe leading edge closer to the origin than the location 
specified by (3.6), the ratio of the leading edge velocity to the velocity in the plume 
behind the leading edge can be shown to be less than the value in (3.7). 



Unsteady buoyant plumes in neutral surroundings 245 

0 0. I 0.2 0.3 

z 

FIQUFCE 1. Dimensionless radial spread, velocity, and buoyancy of an unsteady plume, expressed 
as fractions of the quasi-steady values versus the dimensionless vertical position [see (3.9)]. 
- , numerical solution; ----, asymptotic approximation [(3.8)], h = 1.16; p = 1.0. 

Equation (3.7) gives exactly the shock velocity obtained by applying the shock 
(jump) conditions (see, e.g. Witham 1965) in the initial buoyancy conservation (2.3), 
with the value of buoyancy after the shock equal to 0 (surrounding conditions). In 
practical situations no shock will be developed because of the existence of the thermal 
preceding the plume where the flow conditions do not impose a sudden discontinuity 
in buoyancy. It follows that the leading edge will be located closer to  the origin than 
(3.6) specifies and that the ratio of the leading edge velocity (at the base of the thermal) 
to the plume velocity at the same level will be always less than the value given by 
(3.7). The coefficient a t  the right-hand side of (3.7) takes on the value 0.42 for the 
observed value of A = 1.16 (Middleton 1975). It is important to note that Turner 
(1962), in his work on the development of a starting plume, obtained a measured value 
of 0-38 for the velocity coefficient in (3.7). This measured value is less than the maxi- 
mum theoretical value (0-42), which is consistent with the preceding observation 
regarding the development of a shock in the buoyancy profile. 

The results from the numerical solution are presented now. The numerical solu- 
tions are applicable for points inside the plume up to the location of the leading edge. 
Since the location of the leading edge is not known, the results of the solution of the 
plume equations are evaluated for the dimensionless variable Z varying from 0 up to the 
value specified by (3.6), which determines the maximum possible location of the 
leading edge before a buoyancy discontinuity could occur (cf. discussion in previous 
paragraphs). For comparison, numerical solutions are shown in figures 1 ,2 ,  and 3 for a 
buoyancy flux varying with time according to (2.11) with values of p = 1,  2 and 10 
respectively. 
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FIGURE 2. Legend as figure 1 ,  but p = 2.0. 
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FIGURE 3. Legend as figure 1 ,  but p = 10.0. 

Together with the numerical solution, a first-order analytical approximation is 
plotted. The asymptotic solution has been found by simple asymptotic analysis of the 
normalized equations (3.4) and has the form (for small 2): 

- 13(h2 + 2) - u =  1 -  

- 44h2 + 34 - 
B =  1 -  

98 ” 

2. 
38 

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

It is important to note that the asymptotic solution is independent of the power law 
dependence ( p )  and is very close to the numerical solution, for almost all values of Z 
(see figures 1, 2 and 3). This means that the normalized properties of the plume ex- 
pressed as a function of the independent variable Z are essentially independent of the 
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exact value of the exponent p ,  equation (2.11). It can be shown that the independent 
variable 2, in terms of physical variables, is equal to 

- 1 dF(t)  z z = -  
F(t )  dt U,(z,)' (3.9) 

where F(t)  is the buoyancy flux [(2.11)], and Uo(z)  is the quasi-steady axial plume 
velocity at height z with a buoyancy flux F( t )  at the origin. Equation (3.9) shows that 
the independent variable Z is essentially the ratio of the flow time [z/Uo(z, t ) ]  versus a 
time characteristic of the unsteadiness of the buoyancy flux at the source F/(dF/dt) .  

4. Comparison with experimental results 
There are no reported experiments with unsteady buoyant plumes. However, there 

is extensive literature on temperature profiles in plumes generated from fires, especially 
near the ceiling over the fire source. For steady or nearly steady (quasi-steady) fires, 
the temperature excess near the ceiling over the fire source has been correlated (see, 
e.g. Heskestad 1972) by 

(4.1) Q3H-P - 0.17 to 0-23 "C m*/W%, 

where ATo is the temperature excess in "C, Q is the heat release rate (assuming com- 
plete combustion) inwatts, and H is the distance from the top of the fuel to the ceiling in 
metres. Equation (4.1) has been found experimentally (Yokoi 1960) to hold for the axial 
temperature excess above the fire, with axial distances ( H )  measured from the top of 
the fuel two to three times the horizontal scale of the fire source. However, the constant 
value of the ratio at the left-hand side of (4.1) has been observed to vary (from a value 
of 0.17 to 0.23) in independent experimental investigations (Yokoi 1960) with different 
fuels. Putting aside experimental uncertainties, this discrepancy may be accounted 
for by two observations : 

(i) The heat release rate, Q, in (4.1) should be replaced by the convective component 
of heat release only, denoted by Q,. In general, Q includes both the convective and the 
radiative heat flux generated by the fire. It is known that in turbulent fires (see, e.g. 
Markstein 1976) the convective heat release rate is a fraction of the theoretical heat 
release rate; the fraction varies with the fuel. The convective heat release rate has the 
following relation (Heskestad 1972) to an equivalent buoyancy flux: 

-- *TO 

where C, is the specific heat of the gases and po and To are the density and the absolute 
temperature of the ambient air. It is noted that (4.1) is similar to the temperature 
excess (or density deficiency) equation reported in steady plumes with a virtual source 
located on top of the fuel. 

(ii) Although a virtual source location on top of the fuel is consistent with limited 
experimental evidence, relatively small displacement of the virtual source may have a 
significant effect on the value a t  the right-hand side of (4.1), expecially for smalldis- 
tances above the top of the fuel source. 

Notwithstanding the above objections, (4.1) has proven to be a very useful tool in 
calculating the temperature over a steady or quasi-steady fire. However, in developing 
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fires (4.1) does not hold true (Heskestad 1972). Specifically, in the initial period after 
ignition the left-hand side of (4.1) takes on increasing values with time, but remains 
less than the quasi-steady value, while well into the fire i t  takes on a constant value 
(quasi-steady conditions) in the range specified by (4.1). These observations were a 
motivation for the present work. 

Experimental results of the temperature excess near the ceiling over the fire centre 
for unsteady fires (generating unsteady buoyant plumes) are now presented in terms 
of the variables deduced from the theoretical analysis. It should be emphasized that 
the temperature excess a t  a point (in the present case a point near the ceiling over the 
fire centre) depends on the position of the point relative to the thermal and plume 
behind the thermal. However, in all the fires analysed the thermal cap (transformed to  
a ceiling jet) has passed the area above the fire before an appreciable temperature 
excess was reported. Therefore, the solutions derived in 6 3 (valid inside the plume) 
can be justifiably used to correlate the experimental results. 

Experimental results from tests conducted in two different programs were analysed: 
(i) Two fire tests (no. 41 and no. 35) (Delichatsios 1976a) of 4-6 m high plastic storage 
fires with 13-7 m ceiling clearance were selected because the fuel was homogeneous and, 
hence, there was no ambiguity in calculating the heat release rate. (ii) Two fire tests 
were selected (Heskestad & Delichatsios 1977), wherein wood cribs ignited a t  the 
centre of their bases were the fire source. Such wood crib configurations provide 
reproducible growing fires (Delichatsios 1976 b )  with heat release rate increasing with 
the second power of time. 

The experimental results are plotted in figure 4. I n  this figure the ordinate is the 
ratio of the instantaneous measured value of the temperature excess near the ceiling 
over the fire centre to  the corresponding ‘ quasi-steady ’ value (AT/AT,). The abscissa 
is essentially the dimensionless variable Z [cf. (3.9)]. 

The ordinate was deduced from the data in the following manner. The ratio defined 
by the left-hand side of (4.1) was calculated from the raw data at various times after 
ignition (AT,) was measured by a sensitive thermocouple; Q was calculated from the 
product of the burning rate (deduced from weight loss measurements) and the meas- 
ured heat of combustion; finally, H was taken constant and equal to the distance from 
the top of the fuel to  the ceiling [cf. discussion after (4.1)]. The ratio in the left-hand 
side of (4.1) assumed a constant value (in the range 15 to  21) for times well into the fire 
development; this value was assumed to be the so-called quasi-steady [cf. (4.1)] value. 
Finally, the ordinate was determined by dividing the value of the left-hand side of 
(4.1) a t  various times over its ‘quasi-steady ’ value, as previously determined. 

The abscissa, 5, was calculated by means of (3.9), wherein the quasi-steady value of 
the velocity, U,, has been estimated from the equation (Heskestad 1972): 

‘0 m- - 0.089 to 0.092 m + / ~ *  s, (4.3) 

and the vertical distance was taken equal to  H ,  the distance from the top of the fuel to 
the ceiling. I n  (4.3), Q is expressed in watts, H in metres and CD, in metres per second. 
It follows that the dimensionless co-ordinate in figure 4 is given by 

k-( 1 H4 * p  ) - = - (  1 H4 ) * 1  dQ 
0.09 -q t 0.09 q gdt, (4.4) 
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FIGURE 4. Comparison of experimental results with the theoretical predictions : temperature 
histories over ignition expressed as fractions of the quasi-steady values versus time expressed 
in terms of the dimensionless parameter P. Early times correspond to large values of Z. ( t  in 8, 
H in m, Q in W.) -, numerical solution for p = 2.0; ---, asymptotic solution (independent of 
p ) ;  h = 1.16. 
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with the height H in metres; Q in watts; the time in seconds, and an assumed constant 
in (4.3) equal to  0.09. The power exponent approximating the fire behaviour and the 
height from the top of the fuel to the ceiling are listed in figure 4 for each of the fire tests. 

The asymptotic solution (which is independent of p ) ,  together with the numerical 
solution for p = 2.0 is included in figure 4. The agreement with the experimental 
results is remarkable. I h  addition, it is to be noted that the temperature history, 
expressed in terms of the normalized variables in figure 4, is essentially independent of 
the power exponent p ,  (2.11); this behaviour is consistent with the theoretical predic- 
tions included in the discussion at the end of 3 3 [cf. (3.8)]. 

5. Conclusions 
There are four major results of the present work: 
1. A time similarity formulation of the unsteady plume equations has been dev- 

eloped; 
2. A similarity formulation is possible only if the buoyancy flux is a power law 

function of time; 
3. The velocity of the base of the thermal (leading edge of the plume) preceding the 

plume is shown to be less than the 0.42 fraction of the velocity inside the plume a t  the 
same level; 
4. Numerical and asymptotic solutions of the unsteady plume equations have been 

favourably compared with experimental temperature histories over growing fires. Both 
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the theoretical and the experimental results indicate that temperature histories 
expressed in terms of the normalized variables, shown in figure 4, are only slightly 
dependent on the power exponent appearing in the power law dependence on time of 
the buoyancy flux. 
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